Query Guide

sq implements a jq -style query language, formally known as SLQ.

Behind the scenes, all sq queries execute against a SQL database. This is true even for document sources such as CSV or XLSX. For those document sources, sq loads the source data into an ingest database, and executes the query against that database.

Fundamentals

Let’s take a look at a query that shows the main elements.

$ sq '@sakila_pg | .actor | where(.actor_id < 10) | .first_name, .last_name | .[0:3]'
first_name  last_name
PENELOPE    GUINESS
NICK        WAHLBERG
ED          CHASE

You can probably guess what’s going on above. This query has 5 segments:

HandleTableFilterColumn(s)Row Range
@sakila_pg.actorwhere(.actor_id < 10).first_name, .last_name.[0:3]

Ultimately the SLQ query is translated to a SQL query, which is executed against the @sakila_pg source (which in this example is a Postgres database). The generated SQL query will look something like:

SELECT "first_name", "last_name" FROM "actor"
WHERE "actor_id" < 10
LIMIT 3 OFFSET 0

Shorthand

For a single-table query, you can concatenate the handle and table name. In this example, we list all the rows of the actor table.

# Longhand
$ sq '@sakila_pg | .actor'

# Shorthand
$ sq '@sakila_pg.actor'

If the query only has a single segment and doesn’t contain any shell delimiters or control chars, you can omit the quotes:

$ sq @sakila_pg.actor

If the query is against the active source, then you don’t even need to specify the handle.

$ sq .actor

Filter results (where)

Use the where() mechanism to filter results.

$ sq '.actor | .first_name, .last_name | where(.first_name == "TOM")'
first_name  last_name
TOM         MCKELLEN
TOM         MIRANDA

Ultimately a filter is translated into a SQL WHERE clause such as:

SELECT "first_name", "last_name" FROM "actor" WHERE "first_name" = "TOM"

Operators

The typical comparison operators are available in expressions:

$ sq '.actor | where(.actor_id < 3)'
actor_id  first_name  last_name  last_update
1         PENELOPE    GUINESS    2020-06-11T02:50:54Z
2         NICK        WAHLBERG   2020-06-11T02:50:54Z
OperatorDescription
==Equal to
!=Not equal to
<Less than
<=Less than or equal to
>Greater than
>=Greater than or equal to

You can use boolean operators (&&, ||) to combine expressions.

$ sq '.actor | where(.actor_id <= 2 || .actor_id == 105)'
actor_id  first_name  last_name  last_update
1         PENELOPE    GUINESS    2020-06-11T02:50:54Z
2         NICK        WAHLBERG   2020-06-11T02:50:54Z
105       SIDNEY      CROWE      2020-06-11T02:50:54Z

For boolean and boolean-like (bit, int) columns, you can compare using true and false literals.

$ sq '.people | where(.is_alive == false)'
name        is_alive
Kubla Khan  false

$ sq '.people | where(.is_alive == true)'
name         is_alive
Kaiser Soze  true

Use parentheses to group expressions.

$ sq '.actor | where(.actor_id <= 2 || (.actor_id > 100 && .first_name == "GROUCHO"))'
actor_id  first_name  last_name  last_update
1         PENELOPE    GUINESS    2020-06-11T02:50:54Z
2         NICK        WAHLBERG   2020-06-11T02:50:54Z
106       GROUCHO     DUNST      2020-06-11T02:50:54Z
172       GROUCHO     WILLIAMS   2020-06-11T02:50:54Z

Row range

You can limit the number of returned rows using the row range construct .[x:y]. Note that the elements are zero-indexed.

$ sq '.actor | .[3]'      # Return row index 3 (fourth row)
$ sq '.actor | .[0:3]'    # Return rows 0-3
$ sq '.actor | .[:3]'     # Same as above; return rows 0-3
$ sq '.actor | .[100:]'   # Return rows 100 onwards

At the backend, a row range becomes a LIMIT x OFFSET y clause:

SELECT * FROM "actor" LIMIT 3 OFFSET 2

Column aliases

You can give an alias to a column expression using .name:alias. For example:

$ sq '.actor | .first_name:given_name, .last_name:family_name'
given_name   family_name
PENELOPE     GUINESS
NICK         WAHLBERG

On the backend, sq uses the SQL column AS alias construct. The query above would be rendered into SQL like this:

SELECT "first_name" AS "given_name", "last_name" AS "family_name" FROM "actor"

This works for any type of column expression, including functions.

$ sq '.actor | count():quantity'
quantity
200

It’s common to alias whitespace names:

$ sq '.actor | ."first name":first_name, ."last name":last_name'
given_name  family_name
PENELOPE    GUINESS
NICK        WAHLBERG

But note that the alias itself can contain whitespace if desired. Simply enclose the alias in double quotes.

$ sq '.actor | .first_name:"First Name"'
First Name
PENELOPE
NICK

Whitespace names

If a table or column name has whitespace, surround the name in quotes.

$ sq '.actor | ."first name", ."last name"'
$ sq '."film actor" | .actor_id'

Select literal

You can select a literal as a column value:

# Postgres source
$ sq '.actor | .first_name, "X", .last_name'
first_name  X  last_name
PENELOPE    X  GUINESS
NICK        X  WAHLBERG

You may want to alias the literal column:

$ sq '.actor | .first_name, "X":middle_name, .last_name'
first_name  middle_name  last_name
PENELOPE    X            GUINESS
NICK        X            WAHLBERG

Select expression

In addition to literals, you can also select expressions. If the expression does not refer to any column or table, you can omit the table selector, and use sq as a calculator.

$ sq 1+2
1+2
3

Calculator mode is probably better with --no-header (-H).

$ sq -H 1 + 2 + 3
6

Use parentheses to groups expressions.

$ sq '(1+2)*3'
(1+2)*3
9

You can alias an expression if desired.

$ sq '((1+2)*3):answer'
answer
9

Predefined variables

The --arg flag passes a value to sq as a predefined variable. If you run sq with --arg foo bar, then $foo is available in the query and has the value bar. Note that the value will be treated as a string, so --arg foo 123 will bind $foo to "123".

$ sq --arg first TOM '.actor | where(.first_name == $first)'
actor_id  first_name  last_name  last_update
38        TOM         MCKELLEN   2020-06-11T02:50:54Z
42        TOM         MIRANDA    2020-06-11T02:50:54Z

This is particularly useful when dealing with values that contain whitespace, shell tokens, long strings, etc..

# Value containing single-quote
$ sq --arg last "O'Toole" '.actor | where(.last_name == $last)'

# Value containing double-quote
sq --arg first 'Elvis "The King"' '.actor | .first_name == $first'

It’s common to combine sq --arg with shell variables:

$ PASSWD=`cat password.txt`
$ sq --arg pw "$PASSWD" '.secrets | where(.password == $pw)'

Note that you can supply multiple variables:

$ sq --arg first TOM --arg last MIRANDA '.actor | where(.first_name == $first && .last_name == $last)'
actor_id  first_name  last_name  last_update
42        TOM         MIRANDA    2020-06-11T02:50:54Z

Joins

Use the join construct to join two or more tables. You can join tables in a single data source, or across data sources. That is, you can join a Postgres table and a CSV file, or an Excel worksheet and a JSON file, etc.

Given our Sakila dataset, let’s say we want to get the names of the films that each actor appears in. The relevant tables here are actor, film_actor, and film.

In SQL, the join would look like:

SELECT first_name, last_name, title
FROM actor a
    INNER JOIN film_actor fa ON a.actor_id = fa.actor_id
    INNER JOIN film f ON fa.film_id = f.film_id

The most terse sq query to express this is:

$ sq '.actor | join(.film_actor, .actor_id) | join(.film, .film_id) | .first_name, .last_name, .title'

sq join actor film_actor film using

The general form of a join is:

join_type(.table, predicate_expression)

Join types

The usual SQL join types are supported, except NATURAL JOIN1. Each join type has a short form and a synonym, e.g. fojoin and full_outer_join. You can use either form in your query.

Join typeSynonymSQLNotes
joininner_joinINNER JOINA plain SQL JOIN is actually an INNER JOIN
ljoinleft_joinLEFT JOIN
lojoinleft_outer_joinLEFT OUTER JOIN
rjoinright_joinRIGHT JOIN
rojoinright_outer_joinRIGHT OUTER JOIN
fojoinfull_outer_joinFULL OUTER JOINNot supported in MySQL
xjoincross_joinCROSS JOINDoesn’t take a predicate, e.g. xjoin(.film_actor)

Join predicate

The join predicate is an expression that renders to the SQL JOIN ... ON x term.

Let’s take our terse example from above.

$ sq '.actor | join(.film_actor, .actor_id) | join(.film, .film_id) | .first_name, .last_name, .title'

The most explicit form of that query would be (linebreaks added for legibility):

$ sq '.actor
| join(.film_actor, .actor.actor_id == .film_actor.actor_id)
| join(.film, .film_actor.film_id == .film.film_id)
| .actor.first_name, .actor.last_name, .film.title'

The query above is obviously needlessly verbose.

Table aliases

We can use table aliases to make the query more legible:

$ sq '.actor:a
| join(.film_actor:fa, .a.actor_id == .fa.actor_id)
| join(.film:f, .fa.film_id == .f.film_id)
| .a.first_name, .a.last_name, .f.title'

Table aliases work like column aliases.

Note that table aliases aren’t restricted to join scenarios. You can generally use them anywhere you reference a table, although it’s often somewhat pointless:

# No table alias
$ sq '.actor | .first_name, .last_name'

# With table alias
$ sq '.actor:a | .a.first_name, .a.last_name'

Unary join predicate

In the common case where tables are joined on equality of identically-named columns, you can simply specify the column name.

# Explicit column equality predicate
$ sq '.actor | join(.film_actor, .actor.actor_id == .film_actor.actor_id)'

# Much better!
$ sq '.actor | join(.film_actor, .actor_id)'

This form is logically equivalent to SQL’s USING(col) mechanism, although sq chooses to render it using the explicit equality comparison ON tbl1.col = tbl2.col.

Multiple join predicates

The join predicate is an expression, and can feature an arbitrary number of terms. For example:

$ sq '.tbl1 | join(.tbl2, .tbl1.col1 == .tbl2.col1 && .tbl1.col2 != .tbl2.col2)'

This would render to:

SELECT * FROM "tbl1" INNER JOIN "tbl2"
    ON "tbl1"."col1" = "tbl2"."col1"
    AND "tbl1"."col2" != "tbl2"."col2"

Like any sq expression, you can add parentheses if desired.

$ sq '.tbl1 | join(.tbl2, (.tbl1.col1 == .tbl2.col1) && (.tbl1.col2 != .tbl2.col2))'

No join predicate

CROSS JOIN is the odd man out, in that it doesn’t take a predicate.

$ sq '.film:f | xjoin(.language:l) | .f.title, .l.name'

Cross-source joins

sq can join across two or more data sources. Given three sources:

  • @sakila/pg12 (Postgres)
  • @sakila/my8 (MySQL)
  • @sakila/ms17 (Microsoft SQL Server)

You can join them as follows:

$ sq '@sakila/pg12.actor
| join(@sakila/my8.film_actor, .actor_id)
| join(@sakila/ms17.film, .film_id)
| .first_name, .last_name, .title'

If there’s an active source (@sakila/pg12 in this example), you don’t need to qualify the left (first) table:

$ sq '.actor
| join(@sakila/my8.film_actor, .actor_id)
| join(@sakila/ms17.film, .film_id)
| .first_name, .last_name, .title'

If the handle is omitted from any join table reference, the table’s source is assumed to be that of the leftmost table.

$ sq '@sakila/pg12.actor
| join(@sakila/my8.film_actor, .actor_id)
| join(.film, .film_id)
| .first_name, .last_name, .title'

In the example above, the .film table’s source is taken to be the same as the @sakila/pg12.actor table’s source, i.e. @sakila/pg12.

With @sakila/pg12 as the active source, this query is equivalent to the above:

$ sq '.actor
| join(@sakila/my8.film_actor, .actor_id)
| join(.film, .film_id)
| .first_name, .last_name, .title'

Ambiguous columns

There are two scenarios where column name ambiguity can cause trouble: in the query, and in the result set.

The query below selects the actor_id column, which exists in both the actor table and the film_actor table. The query will fail.

$ sq '.actor | join(.film_actor, .actor_id) | .first_name, .actor_id'
sq: ... ERROR: column reference "actor_id" is ambiguous (SQLSTATE 42702)

The solution here is to qualify the .actor_id column, using either the table name, or table alias (if specified).

# Explicitly specify the column's table
$ sq '.actor | join(.film_actor, .actor_id) | .first_name, .actor.actor_id'

# Same, but using table alias
$ sq '.actor:a | join(.film_actor, .actor_id) | .first_name, .a.actor_id'

If you do want the column values from both tables, you can use a column alias:

$ sq '.actor:a | join(.film_actor:fa, .actor_id)
| .first_name, .a.actor_id:a_actor, .fa.actor_id:fa_actor'
first_name  a_actor  fa_actor
PENELOPE    1        1

What happens if you don’t use a column alias?

$ sq '.actor:a | join(.film_actor:fa, .actor_id) | .first_name, .a.actor_id, .fa.actor_id'
first_name  actor_id  actor_id_1
PENELOPE    1         1

sq automatically renames duplicate column names in the result set. Thus the second actor_id column becomes actor_id_1. This is most frequently seen when executing a SELECT * FROM tbl1 JOIN tbl2: note the actor_id_1 and last_update_1 columns.

 $ sq '.actor | join(.film_actor, .actor_id) | .[0:2]'
actor_id  first_name  last_name  last_update           actor_id_1  film_id  last_update_1
1         PENELOPE    GUINESS    2006-02-15T04:34:33Z  1           1        2006-02-15T05:05:03Z

The renaming behavior is configurable via the result.column.rename option.

Join examples

# INNER JOIN
$ sq '.actor | join(.film_actor, .actor_id)'

# LEFT JOIN
$ sq '.actor | ljoin(.film_actor, .actor_id)'

# LEFT OUTER JOIN
$ sq '.actor | lojoin(.film_actor, .actor_id)'

# RIGHT JOIN
$ sq '.actor | rjoin(.film_actor, .actor_id)'

# RIGHT OUTER JOIN
$ sq '.actor | rojoin(.film_actor, .actor_id)'

# FULL OUTER JOIN
$ sq '.actor | fojoin(.film_actor, .actor_id)'

# CROSS JOIN
$ sq '.actor | xjoin(.film_actor)'

Functions

avg

avg returns the average of all non-null values of the column.

$ sq '.payment | avg(.amount)'
avg(.amount)
4.2006673312974065

catalog

catalog returns the default catalog of the DB connection. See also: schema.

# Postgres source
$ sq 'catalog()'
sakila

# Switch to SQL Server source
$ sq src @sakila/ms19
$ sq 'schema()'
dbo

catalog honors the --src.schema flag, when used in the catalog.schema form. For example:

$ sq --src.schema postgres.information_scheam 'catalog(), schema()'
catalog()  schema()
postgres   public

However, not every driver supports the catalog mechanism fully.

  • MySQL treats catalog and schema as somewhat interchangeable. It’s a mess. But, looking into INFORMATION_SCHEMA.SCHEMATA, MySQL lists CATALOG_NAME as def (for default). Thus, with a MySQL source, catalog() returns the value of CATALOG_NAME, i.e. def.
  • SQLite doesn’t support catalogs at all. Nor does it implement INFORMATION_SCHEMA. Rather than return NULL or an empty string, sq’s SQLite driver chooses to implement catalog() by returning the string default.

count

The no-arg count function returns the total number of rows.

$ sq '.actor | count'
count
200

That renders to SQL as:

SELECT count(*) AS "count" FROM "actor"

With an argument, count(.x) returns a count of the number of times that .x is not null in a group.

# count of non-null values in col first_name
$ sq '.actor | count(.first_name)'

You can also supply an alias:

$ sq '.actor | count:quantity'
quantity
200

count_unique

count_unique counts the unique non-null values of a column.

$ sq '.actor | count_unique(.first_name)'
count_unique(.first_name)
128

group_by

Use group_by to group results.

$ sq '.payment | .customer_id, sum(.amount) | group_by(.customer_id)'

This translates into:

SELECT "customer_id", sum("amount") FROM "payment" GROUP BY "customer_id"

You can use multiple terms in group_by:

$ sq '.payment | .customer_id, .staff_id, sum(.amount) | group_by(.customer_id, .staff_id)'

You can also use functions inside group_by. For example, to group the payment amount by month:

$ sq '.payment | _strftime("%Y/%m", .payment_date), sum(.amount) | group_by(_strftime("%Y/%m", .payment_date))'
strftime('%Y/%m', "payment_date")  sum("amount")
2005/05                            4824.429999999861
2005/06                            9631.87999999961

That translates into:

SELECT strftime('%Y/%m', "payment_date"), sum("amount") FROM "payment"
GROUP BY strftime('%Y/%m', "payment_date")

In practice, you probably want to use column aliases:

$ sq '.payment | _strftime("%Y/%m", .payment_date):month, sum(.amount):amount | group_by(.month)'
month    amount
2005/05  4824.429999999861
2005/06  9631.87999999961

having

Use having to filter results after grouping. The having function must always be preceded by group_by.

$ sq '.payment | .customer_id, sum(.amount) |
group_by(.customer_id) | having(sum(.amount) > 180 && sum(.amount) < 195)'
customer_id  sum(.amount)
178          194.61
459          186.62
137          194.61

That renders to something like:

SELECT "customer_id", sum("amount") AS "sum(.amount)" FROM "payment"
GROUP BY "customer_id" HAVING sum("amount") > 180 AND sum("amount") < 195

max

max returns the maximum value of the column.

$ sq '.payment | max(.amount)'
max(.amount)
11.99

min

min returns the minimum non-null value of the column.

$ sq '.payment | min(.amount)'
min(.amount)
0

order_by

Use order_by to sort results.

$ sq '.actor | order_by(.first_name)'
actor_id  first_name  last_name  last_update
71        ADAM        GRANT      2006-02-15T04:34:33Z
132       ADAM        HOPPER     2006-02-15T04:34:33Z

This translates to:

SELECT * FROM "actor" ORDER BY "first_name"

Change the sort order by appending + (ascending) or - (descending) to the column selector:

$ sq '.actor | order_by(.first_name+, .last_name-)'
actor_id  first_name  last_name  last_update
132       ADAM        HOPPER     2006-02-15T04:34:33Z
71        ADAM        GRANT      2006-02-15T04:34:33Z

That query becomes:

SELECT * FROM "actor" ORDER BY "first_name" ASC, "last_name" DESC

rownum

rownum returns the one-indexed row number of the current row.

$ sq '.actor | rownum(), .first_name | order_by(.first_name)'
rownum()  first_name
1         ADAM
2         ADAM
3         AL

rownum should typically be invoked in conjunction with order_by, or the order of the rows may be undefined.

It’s trivial to return zero-indexed row numbers: simply subtract 1 from the result.

$ sq '.actor | rownum()-1, .first_name | order_by(.first_name)'
rownum()-1  first_name
0           ADAM
1           ADAM
2           AL

Although, you may want to use a column alias:

$ sq '.actor | rownum()-1:index, .first_name | order_by(.first_name)'
index  first_name
0       ADAM
1       ADAM
2       AL

schema

schema returns the default schema of the DB connection. See also: catalog.

# Postgres source
$ sq 'schema()'
public

# Switch to SQL Server source
$ sq src @sakila/ms19
$ sq 'schema()'
dbo

schema honors the --src.schema flag, except for SQL Server. This is because SQL Server does not permit setting the default schema on a per-connection basis (it can only be changed per-user). Thus, schema() always returns the user’s default schema, which is typically dbo.

# Postgres source
$ sq src @sakila/pg12
$ sq --src.schema information_schema 'schema()'
schema()
information_schema

# SQL Server doesn't honor --src.schema
$ sq src @sakila/ms19
$ sq --src.schema information_schema 'schema()'
schema()
dbo

sum

sum returns the sum of all non-null values for the column. If there are no input rows, null is returned.

$ sq '.payment | sum(.amount)'
sum(.amount)
67416.50999999208

unique

unique filters results, returning only unique values.

# Return only unique first names
$ sq '.actor | .first_name | unique'

The function maps to the SQL DISTINCT keyword:

SELECT DISTINCT "first_name" FROM "actor"

Proprietary functions

The standard functions listed above are all portable: that is to say, they behave (more or less) the same whether the backing DB is Postgres, MySQL, etc. Portability / compatability is a primary design goal for sq. Over time, it’s probable that sq’s “standard library” of portable functions will grow. However, sometimes you simply need to invoke a function that exists only in Postgres, or SQL Server, etc. To invoke such a function, simply prefix the proprietary function name with an underscore.

# SQLite "strftime"
$ sq '@sakila | .payment | _strftime("%m", .payment_date)'

# MySQL "date_format"
$ sq '@sakila/mysql | .payment | _date_format(.payment_date, "%m")'

# Postgres "date_trunc" func
$ sq '@sakila/postgres | .payment | _date_trunc("month", .payment_date)'

# SQL Server "month" func
$ sq '@sakila | .payment | _month(.payment_date)'

  1. NATURAL JOIN is not implemented, for several reasons. It’s not universally supported (e.g. SQL Server). It’s considered an anti-pattern by some. And in testing, it doesn’t always work consistently from one DB to the other, leading to user surprise. That said, it’s possible this decision will be reconsidered based on user feedback↩︎